37 research outputs found

    Binary De Bruijn sequences for DS-CDMA systems: analysis and results

    Get PDF
    Abstract Code division multiple access (CDMA) using direct sequence (DS) spread spectrum modulation provides multiple access capability essentially thanks to the adoption of proper sequences as spreading codes. The ability of a DS-CDMA receiver to detect the desired signal relies to a great extent on the auto-correlation properties of the spreading code associated to each user; on the other hand, multi-user interference rejection depends on the cross-correlation properties of all the spreading codes in the considered set. As a consequence, the analysis of new families of spreading codes to be adopted in DS-CDMA is of great interest. This article provides results about the evaluation of specific full-length binary sequences, the De Bruijn ones, when applied as spreading codes in DS-CDMA schemes, and compares their performance to other families of spreading codes commonly used, such as m-sequences, Gold, OVSF, and Kasami sequences. While the latter sets of sequences have been specifically designed for application in multi-user communication contexts, De Bruijn sequences come from combinatorial mathematics, and have been applied in completely different scenarios. Considering the similarity of De Bruijn sequences to random sequences, we investigate the performance resulting by applying them as spreading codes. The results herein presented suggest that binary De Bruijn sequences, when properly selected, may compete with more consolidated options, and encourage further investigation activities, specifically focused on the generation of longer sequences, and the definition of correlation-based selection criteria

    Exploiting orthogonality in DVB-S2X through time pre-compensation

    Get PDF
    The superframing option of the recent DVB-S2X standard specifies, for the so-called SF-Pilot fields, the use of the orthogonal set of Walsh-Hadamard (WH) sequences. In order to exploit this orthogonality, waveforms coming from different beams to the k-th User Terminal (UT) should be quasi perfectly aligned in time. While in the downlink part of a terrestrial system this is quite straightforward, in satellite system, having a satellite as a relay, this is not the case, especially when large baudrates are considered in the transmission. A procedure to compensate for timing misalignment amongst waveforms is here presented and the advantages are quantified through numerical simulations.In particular, Channel State Information (CSI) estimation errors, which are fundamental for precoding techniques, are evaluated. While the focus of the work is on systems which enable precoding techniques, the procedure can be applied in each scenario which uses the superframing structure of DVB-S2X in an interference limited scenario

    An Uplink UE Group-Based Scheduling Technique for 5G mMTC Systems Over LEO Satellite

    Get PDF
    Narrowband Internet of Things (NB-IoT) is one of the most promising IoT technology to support the massive machine-type communication (mMTC) scenarios of the fifth generation mobile communication (5G). While the aim of this technology is to provide global coverage to the low-cost IoT devices distributed all over the globe, the vital role of satellites to complement and extend the terrestrial IoT network in remote or under-served areas has been recognized. In the context of having the global IoT networks, low earth (LEO) orbits would be beneficial due to their smaller propagation signal loss, which for the low complexity, low power, and cheap IoT devices is of utmost importance to close the link-budget. However, while this would lessen the problem of large delay and signal loss in the geostationary (GEO) orbit, it would come up with increased Doppler effects. In this paper, we propose an uplink scheduling technique for a LEO satellite-based mMTC NB-IoT system, able to mitigate the level of the differential Doppler down to a value tolerable by the IoT devices. The performance of the proposed strategy is validated through numerical simulations and the achievable data rates of the considered scenario are shown, in order to emphasize the limitations of such systems coming from the presence of a satellite channel

    Resource Allocation Approach for Differential Doppler Reduction in NB-IoT over LEO Satellite

    Get PDF
    Internet of things (IoT) over satellite is an attractive system architecture which has been proposed as a key-enabling technology, to extend the coverage in remote areas (e.g. desert, ocean, forest, etc), particularly where a terrestrial network is impossible or impractical to reach. One of the most promising technologies that fit the IoT vision of low-power, wide area networks (LPWAN) is the narrowband IoT (NB-IoT). While low earth orbit (LEO) satellites are favourable because of their lower round trip time (RTT) and lower propagation loss in the communication link, they come up with a significantly increased Doppler shift. In our NB-IoT over LEO satellite architecture, we identify the problem of high differential Doppler among channels of different users on Earth, which leads to the performance degradation of our system. In this paper, we propose a resource allocation approach in order to reduce the high values of differential Doppler under the maximum value supported by the standard itself

    On the Random Access Procedure of NB-IoT Non-Terrestrial Networks

    Get PDF
    The standardization of the 5G systems has recently entered in an advanced phase, where non-terrestrial networks will be a new key feature in the upcoming releases. Narrowband Internet of Things (NB-IoT) is one of the technologies that will address the massive machine type communication (mMTC) traf- fic of the 5G. To meet the demanding need for global connectivity, satellite communications can provide an essential support to complement and extend the NB-IoT terrestrial infrastructure. However, the presence of the satellite channel comes up with new demands for the NB-IoT procedures. In this paper, we investigate the main challenges introduced by the satellite channel in the NB-IoT random access procedure, while pointing out valuable solutions and research directions to overcome those challenges

    Per-antenna Power Minimization in Symbol-level Precoding for the Multi-beam Satellite Downlink

    Get PDF
    This paper addresses the problem of multi-user interference in the forward downlink channel of a multi-beam satellite system. A symbol-level precoding scheme is considered, in order to exploit the multi-user interference and transform it into useful power at the receiver side, through a joint utilization of the data information and the channel state information. In this context, a per-antenna power minimization scheme is proposed, under Quality-of-Service constraints, for multi-level modulation schemes. The consideration of the power limitations individually for each transmitting RF chain is a central aspect of this work, and it allows to deal with systems using separate per-antenna amplifiers. Moreover, this feature is also particularly relevant for systems suffering non-linear effects of the channel. This is the case of satellite systems, where the non-linear amplifiers should be properly driven in order to reduce the detrimental saturation effect. In the proposed scheme, the transmitted signals are designed in order to reduce the power peaks, while guaranteeing some specific target signal-to-noise ratios at the receivers. Numerical results are presented in order to show the effectiveness of the proposed scheme, which is compared both to the state of the art in symbol-level precoding and to the conventional MMSE precoding approach
    corecore